whose positive roots are x = 1, or $x = \frac{3 \pm \sqrt{5}}{2}$.

If
$$x = 1$$
, then $D = \frac{2}{\sqrt{2}} = \sqrt{2}$.

If
$$x = \frac{3+\sqrt{5}}{2}$$
, then $D = \frac{2}{\sqrt{3-\left(\frac{3+\sqrt{5}}{2}\right)}} = \sqrt{6+2\sqrt{5}}$.

If
$$x = \frac{3 - \sqrt{5}}{2}$$
, then $D = \sqrt{6 - 2\sqrt{5}}$.

Finally, note that if x = 1, then the two trapezoids are the same unit square.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Call the first trapezoid ABCD such that AB = BC = CD = 1 and DA = x.

Let $\angle ABC = \theta$ so that $\angle ADC = \pi - \theta$. Applying the cosine formula to triangles ABC and ADC, we obtain respectively

$$AC^2 = 2(1 - \cos \theta)$$
 and $AC^2 = x^2 + 2x \cos \theta + 1$.

Eliminating AC from these two equations, we obtain $\cos \theta = \frac{1-x}{2}$ and hence $AC = \sqrt{x+1}$.

Let the diameter of the circle be d. By the sine formula, we have

$$d = \frac{AC}{\sin \theta} = \frac{2}{\sqrt{3-x}}. (1)$$

Call the second trapezoid PQRS such PQ = QR = RS = x and SP = 1.

Let $\angle PQR = \phi$ so that $\angle PSR = \pi - \phi$. By the procedure similar to that for trapezoid ABCD, we obtain

$$d = \frac{PR}{\sin \phi} = \frac{2x\sqrt{x}}{\sqrt{3x - 1}}.$$
 (2)

From (1) and (2), we obtain $x^4 - 3x^3 + 3x - 1 = 0$, whose positive roots are

1,
$$\frac{3-\sqrt{5}}{2}$$
, $\frac{3+\sqrt{5}}{2}$. The corresponding values of d are $\sqrt{2}$, $\sqrt{5}-1$, and $\sqrt{5}+1$.

Also solved by Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of Technology, Sydney, Australia (jointly with) Elton Bojaxhiu, Kriftel, Germany; Charles McCracken, Dayton, OH; John Nord, Spokane, WA; Boris Rays, Brooklyn, NY; Raul A. Simon, Santiago, Chile; Trey Smith, San Angelo, TX; Jim Wilson, Athens, GA, and the proposer.

• 5154: Proposed by Andrei Răzvan Băleanu (student, George Cosbuc National College) Motru, Romania

Let a, b, c be the sides, m_a, m_b, m_c the lengths of the medians, r the in-radius, and R the circum-radius of the triangle ABC. Prove that:

$$\frac{m_a^2}{1 + \cos A} + \frac{m_b^2}{1 + \cos B} + \frac{m_c^2}{1 + \cos C} \ge 6Rr\left(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}\right).$$

Solution by Arkady Alt, San Jose, California, USA

Since

$$\begin{split} \frac{m_a^2}{1+\cos A} &= \frac{m_a^2}{2\cos^2\frac{A}{2}} = \frac{m_a^2}{2}\left(1+\tan^2\frac{A}{2}\right) = \frac{m_a^2}{2} + \frac{m_a^2}{2}\tan^2\frac{A}{2} \\ &= \frac{m_a^2}{2} + \frac{m_a^2}{2} \cdot \frac{r^2}{(s-a)^2} = \frac{2\left(b^2+c^2\right)-a^2}{8} + \frac{(b+c)^2-a^2+(b-c)^2}{8} \cdot \frac{r^2}{(s-a)^2} \\ &\geq \frac{2\left(b^2+c^2\right)-a^2}{8} + \frac{s\left(s-a\right)r^2}{2\left(s-a\right)^2} = \frac{2\left(b^2+c^2\right)-a^2}{8} + \frac{sr^2}{2\left(s-a\right)}, \end{split}$$

then

$$\sum_{cvc} \frac{m_a^2}{1 + \cos A} \ge \frac{3\left(a^2 + b^2 + c^2\right)}{8} + \frac{sr^2}{2} \sum_{cvc} \frac{1}{s - a}.$$

Noting that

$$\frac{sr^2}{2} \sum_{cyc} \frac{1}{s-a} = \frac{(s-a)(s-b)(s-c)}{2} \sum_{cyc} \frac{1}{s-a} = \frac{1}{2} \sum_{cyc} (s-b)(s-c)$$
$$= \frac{2ab + 2bc + 2ca - a^2 - b^2 - c^2}{8},$$

we obtain

$$\frac{3\left(a^2 + b^2 + c^2\right)}{8} + \frac{sr^2}{2} \sum_{cuc} \frac{1}{s-a} = \frac{ab + bc + ca + a^2 + b^2 + c^2}{4}.$$

Hence,

$$\sum_{cuc} \frac{m_a^2}{1 + \cos A} \ge A, \text{ where } A = \frac{ab + bc + ca + a^2 + b^2 + c^2}{4}.$$

Also since,

$$6Rr = \frac{12Rrs}{2s} = \frac{3abc}{2s}$$
 and $\frac{a}{b+c} \le \frac{a^2(b+c)}{4abc}$,

we have,

$$B \ge 6Rr \sum_{cyc} \frac{a}{b+c}$$
, where $B = \frac{3abc}{2s} \sum_{cyc} \frac{a^2(b+c)}{4abc} = \frac{3}{4(a+b+c)} \sum_{cyc} a^2(b+c)$.

Thus, it suffices to prove inequality $A \geq B$.

Since $\sum_{cyc} a(a-b)(a-c) \ge 0$ (by the Schur Inequality), we have

$$4(a+b+c)(A-B) = (a+b+c)(ab+bc+ca+a^2+b^2+c^2) - 3\sum_{a \in A} a^2(b+c)$$

$$= (a+b+c) \left((a+b+c)^2 - ab - bc - ca \right)$$

$$- 3(a+b+c) (ab+bc+ca) + 9abc$$

$$\iff 9abc + (a+b+c)^3 \ge 4(a+b+c) (ab+bc+ca)$$

$$\iff \sum_{cyc} a(a-b) (a-c) \ge 0.$$

Also solved by Kee-Wai Lau, Hong Kong, China, and the proposer.

• 5155: Proposed by José Luis Díaz-Barrero, Barcelona, Spain
Let a, b, c, d be the roots of the equation $x^4 + 6x^3 + 7x^2 + 6x + 1 = 0$. Find the value of

$$\frac{3-2a}{1+a} + \frac{3-2b}{1+b} + \frac{3-2c}{1+c} + \frac{3-2d}{1+d}.$$

Solution 1 by Valmir Bucaj (student, Texas Lutheran University), Seguin, TX

Since a, b, c, d are the roots of the equation $x^4 + 6x^3 + 7x^2 + 6x + 1 = 0$, by Viéte's formulas we have

$$\begin{array}{rcl} a+b+c+d&=&-6\\ ab+ac+ad+bc+bd+cd&=&7\\ abc+abd+acd+bcd&=&-6\\ abcd&=&1. \end{array}$$

For convenience we adopt the following notation:

$$\begin{array}{rcl} x & = & a+b+c+d \\ y & = & ab+ac+ad+bc+bd+cd \\ z & = & abc+abd+acd+bcd \\ w & = & abcd. \end{array}$$

Finally, we have:

$$\frac{3-2a}{1+a} + \frac{3-2b}{1+b} + \frac{3-2c}{1+c} + \frac{3-2d}{1+d} = \frac{-(8w+3z-2y-7x-12)}{w+z+y+x+1}$$
$$= \frac{-(8\times1+3\times(-6)-2\times7-7\times(-6)-12)}{1-6+7-6+1}$$

Solution 2 by Brian D. Beasley, Clinton, SC

Since $x^4 + 6x^3 + 7x^2 + 6x + 1 = (x^2 + x + 1)(x^2 + 5x + 1) = 0$, we calculate the four roots and assign the values $a = (-1 + i\sqrt{3})/2$, $b = (-1 - i\sqrt{3})/2$, $c = (-5 + \sqrt{21})/2$, and $d = (-5 - \sqrt{21})/2$. This yields: